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ABSTRACT
Flexibility is often an unavoidable limitation when large-

workspace high-speed manipulation is required. This flexibility
can be mitigated in some circumstances through feedback con-
trol methods. However, these methods only correct for vibration
after it has been measured. Therefore, if low-vibration reference
commands can be generated, then the utility of these systems can
be greatly improved. However, there are instances where system
nonlinearities limit the effectiveness of many command-shaping
techniques. This paper proposes a method for the generation of
fast vibration-limiting trajectories for flexible systems based on
the differential-flatness property of nonlinear systems. This ap-
proach is applied to a tower crane for simulation and experimen-
tal validation. The results are compared to those from standard
command-shaping techniques. Practical implementation issues
for real world systems are discussed.

INTRODUCTION
Flexible motion systems are prone to excessive and unde-

sired vibration when operated near their performance limits. To
mitigate these effects they are often operated well below their
capable operating speeds. This not only limits the efficiency of

∗Address all correspondence to this author.

these systems, but also hinders their functionality, as dexterity,
performance, and workspace size are sacrificed for accuracy and
reliability.

While feedback control yields performance improvements
in vibration reduction and the ability to correct for external dis-
turbances, errors between desired and ideal behavior must be
measured before any control action is applied. Therefore, po-
tential control structures should utilize reference command tra-
jectories that result in a low level of undesired and potentially
damaging vibration. In doing so, the utility of these systems can
be expanded and the burden on reactive feedback control can be
reduced.

While many motion systems are human operated in real
time, like most industrial cranes and excavators, a large num-
ber use preprogrammed or repeated trajectories. For example,
industrial robots used in manufacturing are often programmed to
repeatedly perform the same motion. In some cases the control
objective is to track a desired trajectory, for obstacle avoidance
or efficiency. In other cases it is primarily to complete a motion
by ending in the desired location. In either case, it is useful if
the trajectory results in a reduction of both residual vibration and
transient deflection.
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Figure 1. JERK LIMITED ACCELERATION PROFILE

We propose a method to generate trajectories for flexible
motion systems with predetermined way-point targets. It is based
on the differential flatness property of nonlinear systems as de-
veloped in [6] and generates paths that result in both a reduction
in residual vibration and transient deflection while enabling high-
speed operation. This method is then applied to a tower crane in
simulations and experiments aimed at accessing the effectiveness
of the command generation approach to provide fast, vibration-
limiting motions. The results are benchmarked against common
command-shaping techniques.

FLATNESS-BASED CONTROL
Differential Flatness as discussed in [4, 6, 7, 9, 13] is a prop-

erty akin to controllability of linear systems. It ensures the exis-
tence of a transformation from the desired output to a controlled
variable. Flatness based control, is one method of inverse dy-
namics [4,10,14,21] where a “flat output” is used to develop this
mapping between output and input. The existence of a flat out-
put means that the state x and input u can be directly expressed
in terms of the output y and a finite number of its derivatives
without the solution of a differential equation as described by:

x = A(y, ẏ, ÿ, . . .) (1)
u = B(y, ẏ, ÿ, . . .)

Therefore, given a set of desired flat trajectories, command
profiles can be directly determined that yield the desired output.
As a result, if a flat trajectory is specified that has no oscillatory
behavior, then the command produced by the mapping should
result in no vibration. This, of course, relies on the assumption
that every behavior of the dynamic system is modeled very accu-
rately and that the system is capable of producing the command
profiles.

This formulation produces additional constraints for the
specification of the desired trajectories, most importantly that
the trajectory must be continuous, at a minimum, to the high-
est order dynamic of the flat output. However, in the literature
it is suggested that for a C2 dynamic system the specified tra-
jectory be at least C4 [7]. Finally, at the initial and final posi-
tion the successive derivatives must be zero, i.e. for a C2 system

Figure 2. TOWER CRANE DIAGRAM

ẏ(0), ÿ(0),y(3)(0),y(4)(0) = 0 and ẏ(t f ), ÿ(t f ),y(3)(t f ),y(4)(t f ) =
0. To satisfy these constraints a polynomial is traditionally gen-
erated whose coefficients are matched to the specific boundary
conditions [21]. However, this results in an S-curve like trajec-
tory, which only reaches the maximum velocity at one instant
in time. Thus, this approach can result in slow commands that
hinder system performance [18].

Therefore, to define the trajectories used in this study,
switching times for the acceleration profile of a jerk-limited com-
mand, described in [19], were calculated. Then, a third-order
spline curve with the appropriate boundary conditions was fit to
the desired acceleration to create a trajectory that satisfied all of
the conditions for the flat output formulation. This process is
shown in Figure 1. This curve was then numerically integrated
with a simple trapezoidal approximation and a 1 millisecond
sampling rate to determine the velocity profile, and integrated
again to determine the position trajectory. Once the trajectory
was completely defined, the flatness-based control algorithm was
executed to produce the desired commands. These commands
were then checked against the performance capabilities of the
motors and drives. If the commands violated the velocity or ac-
celeration limits, then the design trajectories were modified by
selectively reducing the aggressiveness of the desired motions.
This procedure was carried out iteratively until the commands
produced were within the capabilities of the system.

TOWER CRANE MODELING
As illustrated in Figure 2, a tower crane consists of three

controllable parameters, the suspension cable length R, the trol-
ley radial position D and the slew angle S as described in [8].
Motion of these axes results in payload swing in the radial φ

and tangential directions θ. Assuming the cable length changes
slowly, the swing dynamics can be modeled by (2), as described
in [3].
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Figure 3. SIMPLIFIED SYSTEM DIAGRAMS

Rφ̈+Rθ̇cos(φ)sin(φ)+gcos(θ) =

− D̈cos(φ)+DṠ2 cos(φ)−DS̈ sin(φ)sin(θ) (2)

−2ḊṠ sin(φ)sin(θ)−2RṠθ̇cos2(φ)cos(θ)

−RS̈ sin(θ)+RṠ2 sin(φ)cos2(θ)cos(φ)

Rθ̈cos(φ)−2Rφ̇θ̇sin(φ)+gsin(θ) =

DS̈cos(θ)+2ḊṠcos(θ)+2RṠφ̇cos(φ)cos(θ) (3)

+RS̈ sin(φ)cos(θ)+Lṡ2 sin(θ)cos(φ)cos(θ)

These nonlinear equations of motion were used in the sim-
ulations, but the coupling between the swing angles φ and θ and
axes commands R, D, and S prevent (2) and (3) from satisfy-
ing the conditions of a differentially-flat system. Therefore, they
were not used to generate the command trajectories. Instead a
simplified model was derived by selecting a more convenient set
of outputs and neglecting Coriolis terms, in order to satisfy the
differential-flatness constraints.

Flat Outputs
Let the radial position x, vertical position z and rotation

about the slew axis θp of the payload as shown in Figures 3(a)
and 3(b) be the flat outputs of the tower crane. Then from Figure
3(a) the following equations of motion and geometric relations
can be determined.

mz̈ = mg−T cos(φ) (4)

mẍ−mxθ̇p
2
=−T sin(φ) (5)

cos(φ) =
z
R

(6)

sin(φ) =
x−D

R
(7)

Substituting (6) and (7) into (4) and (5) yields the trolley
displacement:

Figure 4. MOTION COMMANDS

D = x−
z(ẍ− xθ̇p

2
)

z̈−g
(8)

Assuming small tangential deflections, application of the
Pythagorean theorem R2 = (x−D)2 + z2 provides a solution for
the cable length:

R2 = z2 +

[
z(ẍ− xθ̇p

2
)

z̈−g

]2

(9)

Treating the energy stored by gravity while the pendulum
deviates from vertical, as illustrated in Figure 3(b), by a torsional
spring with a spring constant of K = mg

R yields the equation of
motion:

S =
R
g

θ̈p +θp (10)

Note that the simplified crane model given in (8), (9), and
(10) now satisfies the definition of a differentially flat system
with flat outputs x, z, and θp. Therefore, by supplying the de-
sired payload trajectory information at each time step (ẍ, ẋ, x, z̈,
z, θ̈p, θ̇p, and θp) the necessary hoist length R, trolley position D,
and slew angle S can be calculated in closed form. An example
of those commands is shown in Figure 4.

It is also important to note that this formulation includes
nonlinear coupling between the motion axes. This coupling ap-
pears in the form of centripetal acceleration from the motion

of the slew axis, and changing natural frequency
√

g
R from the

changing hoist length. However, the coupling from Coriolis ef-
fects violates the differential-flatness constraints and was there-
fore neglected.

From this point on, this approach will be referred to as Crane
Applied Inverse Dynamics (CAID). An illustration of the general
control scheme is presented in Figure 5. Starting with a desired
payload trajectory for each axis yd , the CAID controller produces
the commands necessary to achieve the desired motion. These
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Figure 5. CONTROL STRUCTURE

Figure 6. COMMAND SHAPERS

are then executed via PD feedback controllers for each motion
axis. The result is a nearly direct one-to-one mapping between
desired and actual payload trajectories.

SIMULATION
To examine the effectiveness of the proposed method for a

tower crane, a simulation was performed using standard com-
mand shapers as benchmarks. For more thorough discussion of
command-shaping techniques see [2, 3, 5, 11, 12, 15, 17, 19].

Command shaping seeks to reduce or eliminate residual vi-
bration by generating a reference command that does not excite
the oscillatory behavior of the system. Input shaping is a specific
type of shaping that convolves the baseline command with a se-
ries of impulses. If the baseline command is a step input, then
the shaped command will be a sequence of steps, as illustrated in
Figure 6. The impulse times are directly related to the period of
oscillation, and thus to the natural frequency of the system.

The zero vibration or ZV shaper as illustrated in the top part
of Figure 6 is the simplest shaper. For undamped systems, it
contains two equal impulses A1 and A2 separated by one half
period of vibration [15, 20]:[

Ai
ti

]
=

[
0.5 0.5
0 0.5T

]
(11)

As shown by the solid line in the top of Figure 7, the result
is a move with no residual vibration and a time lag of T

2 relative
to the unshaped (US) response.

While ideally resulting in zero vibration the ZV shaper is
not robust to changes in the natural frequency of the system. Re-
laxing the vibration constraint at the design frequency to a tol-

Figure 7. RESPONSES FOR UNDAMPED VIBRATORY SYSTEMS

erable level, Vtol , and adding another impulse to the shaper can
significantly improve robustness. The resulting design is an extra
insensitivity (EI) shaper [16]:[

Ai
ti

]
=

[ 1+Vtol
4

1−Vtol
2

1+Vtol
4

0 0.5T T

]
(12)

The increased robustness of the EI shaper comes at the ex-
pense of risetime that is increased by an additional half period,
as seen in the lower part of Figure 7.

Figure 8 is a result of a simulation of the payload response
to a 0.21m point-to-point motion of the trolley using all four con-
trol methodologies: unshaped (US), ZV shaped, EI shaped and
with the CAID controller. It is immediately obvious that the ZV
shaper, EI shaper, and CAID controller result in a drastic reduc-
tion in residual vibration of the payload when compared to the
unshaped (trapezoidal velocity profile) case.

The move time, residual vibration, and the transient deflec-
tion are summarized in Table 1. These results show that for
motion in the trolley axis with constant hoist length (1m), the
ZV shaper and CAID controller perform the desired move in
relatively comparable times, with the CAID controller slightly
slower because the commands are moderately less aggressive.
The EI shaper produces a significantly slower response.
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Figure 8. PAYLOAD RESPONSE

Table 1. TROLLEY POINT-TO-POINT RESPONSE

US ZV EI CAID

Time (s) 1.64 2.68 3.72 2.92

Res. Vib (◦) 3.511 0.223 0.155 0.016

Move Def. (◦) 2.732 1.195 0.626 0.754

Figure 9. NONLINEAR EFFECTS

Also important to note is that while the ZV and EI shapers
enforce conditions on the residual vibration, no direct attempt is
made to minimize the payload sway during the move. In con-
trast, by specifying the position, velocity, and acceleration of the
payload at every time step, the CAID controller results in less
deflection during the move than the ZV shaper and faster move
time than the EI shaper. The EI shaper does produce the lowest
transient deflection, but at the cost of a 27% increase in execution
time.

While comparable to the ZV shaper in both speed and resid-
ual vibration for the single axis case, the benefit of the CAID
method becomes more noticeable as the nonlinearities of the sys-
tem are amplified by slewing and changing the hoist length.

As illustrated by Figure 9, the overall effect of these methods
is to place zeros in the vicinity of the flexible system poles reduc-
ing their effect in the response [1,19]. The EI Shaper places a set
of zeros above and below the vibratory poles resulting in a reduc-

Figure 10. RESIDUAL VIBRATION PROFILES

tion of vibration for wide variations in natural frequency. How-
ever, the ZV shaper and CAID controller place zeros directly
over the poles, effectively eliminating the oscillatory nature of
the response, when the model is perfect. As the pole locations
change, moving towards the real axis for increasing and away
for decreasing hoist length, the ZV zero locations remain fixed,
resulting in imperfect cancellation. The CAID zeros, however,
attempt to track the changing poles.

Figure 10 shows the residual oscillation of the payload for a
0.53m trolley move, a 1.22m change in hoist length, and a 180
degree change in slew. The residual vibration in the radial direc-
tion is significantly lower with the CAID controller than either
the ZV or EI shapers. In the tangential direction, the ZV shaper
provides the smallest residual vibration. However, the magnitude
of the residual vibration, as expressed by the norm of the maxi-
mum tangential and radial deflections, is significantly smaller for
the CAID method.

EXPERIMENTS
The CAID method was tested on the portable tower crane

shown in Figure 11. The experiments examined the practical-
ity, performance, and robustness of the algorithm on a physi-
cal system with realistic performance limitations. Each axis of
the crane was actuated via an AC servomotor controlled with
Siemens drives and interfaced with a Siemens PLC with a control
loop rate of 0.04s. Trolley, hoist and slew positions were mea-
sured with rotary encoders on the motor shafts. Payload swing
in both the radial and tangential directions was measured with an
overhead camera attached to the trolley.

Each motion sequence was performed using four control
methodologies: unshaped, ZV shaped, EI shaped, and with the
CAID controller. The moves used in the studies were chosen
to minimize the dependency of the system performance on the
move itself. For example, a simple straight-line move using un-
shaped commands can “accidentally” cause zero residual vibra-
tion if the move distance happens to be the right value. These
special cases can be avoided by testing multiple move distances.
Each trajectory was also initiated from the same starting loca-
tion to remove any bias from asymmetries in the operational
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Figure 11. PORTABLE TOWER CRANE

workspace.
To excite the vibratory dynamics of the crane, each axis

was operated near its performance limits. For the trolley axis
these limits are a maximum velocity of 0.14 m

s and acceleration
of 1.20 m

s2 . For the slew axis, the velocity limit is 0.35 rad
s and

the acceleration limit is 0.7 rad
s2 . For the hoist axis, only a ve-

locity limit of 0.13 m
s was included. Residual vibration results

are expressed as the norm of the maximum radial and tangential
residual vibrations.

Performance Comparisons
The first set of experiments assessed the performance of

the CAID controller for point-to-point trolley motions. Ta-
ble 2 shows the results for both short (∆D = 0.21m) and long
(∆D = 0.43m) trolley motions. Both the ZV and CAID algo-
rithms result in nearly the same move time, while the EI shaper
takes significantly longer. All controllers, however, have a longer
execution time than the unshaped case. Relative to the unshaped
case, all the controllers result in drastic improvements in resid-
ual vibration. Contrary to the simulation results, the ZV shaper
outperforms the CAID controller for this specific motion because
the required CAID trajectory was partially unrealizable using the
physical system, due primarily to the relatively low sampling fre-
quency.

When slew axis motion is introduced, the CAID algorithm
shows drastic improvements in performance over both the ZV
and EI shapers. As expected, the CAID algorithm compensates
for centripetal acceleration generated by the slewing motion re-
sulting in decreased residual vibration when compared to the
other command generation methods.

When the crane executes a trajectory using all three axes, the
ZV and CAID speeds are comparable. However, the residual vi-
bration of the CAID response more closely resembles that of the
EI shaper. Thus, the CAID controller exhibits the speed of a ZV
shaper with accommodation for variation in system parameters

Table 2. POINT-TO-POINT MOTIONS

Move (m)(m)(◦) Move Time (s) Res. Vib. (◦)

∆ D ∆ R ∆ S US ZV EI CAID US ZV EI CAID

Trolley Only

0.21 0 0 1.68 2.76 3.76 2.92 1.96 0.11 0.22 0.29

0.43 0 0 3.28 4.28 5.32 4.20 2.66 0.14 0.30 0.20

Trolley + Slew

0.21 0 45 3.32 4.44 5.36 4.44 3.56 0.53 0.40 0.11

0.43 0 90 5.24 6.24 7.08 6.04 2.29 0.74 0.35 0.10

Trolley + Hoist + Slew

0.21 0.61 90 5.16 6.08 7.16 6.20 2.69 0.94 0.41 0.45

0.43 1.22 180 9.72 10.70 11.70 10.80 1.94 0.82 0.27 0.35

Figure 12. MULTI-WAYPOINT TRAJECTORY

like an EI shaper.
When a comparison is drawn between each of the techniques

it is apparent that the CAID method provides a good combina-
tion of both speed and vibration reduction. ZV shaping results
in comparably fast motions, but with increased residual vibra-
tions when the nonlinearities become important. EI shaping cre-
ates trajectories with low residual vibration amplitudes for a wide
range of conditions, but at the cost of slower operation.

A series of tests using a trajectory with 6 way-points was
also executed. The specific trajectory is illustrated in Figure 12.
It consists of 5 separate coordinated trajectories exercising all
three axes. At each way-point the payload paused momentarily
before continuing to the next location using the fastest possible
trajectory.
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Table 3. MULIT-WAYPOINT TRAJECTORY

Move Time (s) Res. Vib. (◦)

ZV EI CAID ZV EI CAID

32.6 36.7 33.5 4.93 1.07 1.08

The results using this complex trajectory are listed in Ta-
ble 3. While the ZV shaper executes the trajectory in the short-
est time, it also results in almost 5 degrees of residual vibration
compared to only 1 degree for both the EI shaper and CAID
controller. The EI shaper takes approximately 10% longer to
complete the sequence of moves. These results indicate that the
CAID method is the best approach for these preplanned complex
trajectories.

Robustness Comparisons
Often the parameters of a system cannot be accurately esti-

mated or they are unmeasurable. Thus, it is important to exhibit
robustness to parameter errors, such as an incorrect hoist length.
To evaluate robustness, several tests were performed to examine
the performance of the CAID method relative to both the ZV and
the EI shapers when modeling errors existed.

When the jib of the tower crane slews, centripetal accelera-
tion causes radial deflection, the magnitude of which is propor-
tional to the slew rate squared and the trolley position. Therefore,
if the trolley position were recorded incorrectly and used to de-
sign the CAID trajectory, it would compensate incorrectly for
the centripetal acceleration, causing errors in the response and
residual vibration.

Table 4 summarizes the responses for several tests that in-
clude modeling errors of 44− 90% in the trolley position and
24−56% in the hoist length. It is obvious that when the incorrect
trolley position is used, the CAID residual vibration amplitudes
are greater than any of the previous tests without parameter er-
ror. However, they are approximately the same as the ZV shaper
results in magnitude.

As the length of the pendulum varies, the natural frequency
changes, as previously described. The CAID method, like the
ZV shaper, essentially seeks to cancel the resonant system poles
by placing zeros over them. If the natural frequencies are iden-
tified incorrectly, then the cancellation will be imperfect. This
results in trajectory error and residual vibration, as shown in Ta-
ble 4. Conversely, the EI shaper suppresses vibrations over a
large range of natural frequencies.

DISCUSSION
The flatness property provides a powerful framework for the

generation of efficient commands for flexible motions systems,
especially in the case of systems with nonlinear coupling be-
tween motion axes. Provided the desired trajectories are known
before motion is initiated, and meet the continuity criteria out-
lined, the parameterization of the system in terms of the flat

Table 4. ROBUSTNESS TESTS

Ideal Actual Move Res. Vib. (◦)

Slew w/Incorrect Trolley Pos.

Dideal Dactual Slew ZV EI CAID

0.48 0.91 90 0.46 0.44 0.47

0.48 0.69 90 0.50 0.32 0.50

Trolley w/Incorrect Hoist Length

Rideal Ractual Trolley ZV EI CAID

1.09 1.70 0.43 0.36 0.17 0.34

1.09 1.35 0.43 0.55 0.08 0.58

Slew w/Incorrect Hoist Length

Rideal Ractual Slew ZV EI CAID

1.09 1.70 90 1.73 0.32 1.51

1.09 1.35 90 0.91 0.19 0.84

outputs provides a closed-form solution to the inverse dynamics
problem. However, no guarantee exists that the commands pro-
duced will satisfy the constraints imposed by the physical sys-
tem. The method must check the desired commands for limit vi-
olations, and selectively reduce the performance objectives of the
desired trajectory until the generated commands meet the system
limitations.

In both the simulated and experimental responses, the CAID
controller provided smooth, low-vibration paths for a tower crane
with move times comparable to a ZV shaper. Robustness of the
proposed scheme to variations in system parameters was shown
to be similar to that of a EI shaper. However, when system mea-
surements are inaccurate or unavailable, ZV shaper like robust-
ness properties are observed. This indicates that when trajec-
tories are designed using inaccurate system values, extraneous
residual and transient vibration will likely occur. However, this
level of vibration will still be a significant improvement relative
to the unshaped case. If parameters are particularly uncertain
more robust techniques like EI shapers should be employed, but
if parameters are known but change quickly, the flatness-based
method is an excellent choice.

One significant drawback to the proposed approach is the
requirement of C4 desired trajectories. This requires predeter-
mined start and end locations, and restricts its application to only
autonomous or semi-autonomous operation where the trajectory
is known before motion is initiated.

CONCLUSIONS
Using a trajectory-generation strategy based on the property

of differential flatness for nonlinear systems, a series of simula-

7 Copyright © 2011 by ASME

Downloaded 04 Feb 2013 to 130.207.33.208. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tions and experiments were performed to asses the effectiveness
and practicality of the proposed method. Guidelines for the cre-
ation of these trajectories were outlined, resulting in fast trajecto-
ries for realistic systems with performance constraints. Compar-
isons to standard input-shaping techniques were made indicating
the flatness-based approach results in a good trade off between
residual vibration and response time.

FUTURE WORK
While cranes are an excellent example of flexible motion

systems, we believe that this approach could be applied to other
prevalent systems where inherent flexibility necessitates the gen-
eration of trajectories that reduce vibrations. One such example
is that of robot manipulators where workspace and performance
size are sacrificed for the sake of rigidity. By enabling vibration-
free motion with changing system dynamics, the utility of these
systems could be improved by enabling lighter weight, higher
performance manipulators.

Also outstanding is a closed form method for generating jerk
limited trajectories that satisfy the criteria for the flatness based
method, namely C4 and satisfying the necessary boundary condi-
tions. Numerical improvements could allow application on em-
bedded systems to generate trajectories for achieving identified
goal states in real time. For example, for use in pick-and-place
operations.
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